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Abstract
Household surveys often fail to capture the top tail of income and wealth distributions, as
evidenced by studies based on tax data. Yet to date there is no consensus on how to best rec-
oncile both sources of information, given the multiple biases at play. This paper contributes
a novel method, rooted in standard calibration theory, to directly confront the problem of
survey non-response between survey micro-data and anonymous tax data under reasonable
assumptions. Our key innovation is to endogenously determine a “merging point” between
the datasets, above which we start to incorporate information from tax data into the sur-
vey, under the assumption that the rate of representativeness is constant, then decreasing
with income. This is followed by a “reweighting” and a “replacing” step, which preserves
the microdata structure of the original survey, assuming no re-ranking of observations. We
illustrate our approach with simulations, which show that our method is robust to the exis-
tence of income misreporting, and performs better than alternative methods. We also apply
it to real data from five countries, both developed and less developed, finding changes to
the levels and trends in income inequality. We discuss several limits to our approach and
suggest some guidelines for future research.

Keywords Calibration · Inequality · Reweighting · Survey representativeness · Tax data

1 Introduction

For a long time, most of what we knew about the distribution of income, wealth and their
covariates came from surveys, in which randomly chosen households are asked to fill out
a questionnaire. Household surveys have been an invaluable tool for tracking the evolution
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of society. But in recent years, the research community has grown increasingly concerned
with their limitations. In particular, surveys have struggled to keep track of the evolution
of the top tail of the distribution, due mainly to heterogeneous response rates, misreporting
and small sample bias, which distort all sorts of distributional estimates. These biases end
up affecting the way public policy is designed and evaluated.

For this reason, researchers have been increasingly exploring a different source to study
inequality: tax data. The idea is not new; we can trace it back to the seminal work of Kuznets
(1953), or even (Pareto 1896). More recently, Piketty and Saez (2003) and Piketty (2003)
applied their method to more recent data for France and the United States. This work was
extended to more countries by many researchers whose contributions were collected in two
volumes by Atkinson and Piketty (2007, 2010).

But tax data have their own limitations. They usually only cover the top of the distribution
and include, at best, a limited set of covariates. They do not capture informal and tax-exempt
income. They are often not available as microdata but rather as tabulations summarizing
the distribution, which limits their usage. The statistical unit that they use (individuals or
households) depends on the local legislation and may not be comparable from one country
to the next. This is why many indicators, such as poverty rates or gender gaps, have to be
calculated from surveys. The use of different — and sometimes contradictory — sources to
compute statistics can make it hard to build consistent and accurate narratives on distribu-
tional matters. This explains the ongoing effort to combine the different data sources at our
disposal in a way that exploits their strengths and corrects their weaknesses.

There have been a number of suggested approaches to deal with the problem of merg-
ing tax and survey data, yet the literature has largely failed to converge towards a standard.
In this paper, we develop a methodology to address the underrepresentation of top incomes
in surveys that has significant advantages over previous ones. Our method avoids rely-
ing, to the extent possible, on ad hoc assumptions and parameters. Our key innovation is
to present a data-driven way to determine the point in the survey data where the system-
atic undercoverage of income starts, and use it as the basis for combining data sources.
We call this point the “merging point” — the point in the distribution above which survey
data and tax data are joined together. Our method for selecting the merging point is jus-
tified under the assumption that the rate of representativeness is constant, then decreasing
with income. Violations of this assumption would render the method less effective, as we
discuss below. In general, our approach is conservative in that it selects a higher merging
point than alternative approaches and therefore adjusts the survey distribution over a smaller
range.

Once this merging point has been chosen, we correct the survey by applying both a
“reweighting” and a “replacing” step. The reweighting step enforces the representativeness
of the survey in terms of income as well as other covariates. It follows the standard sur-
vey calibration theory that is already routinely employed by statistical institutes to enforce
survey representativeness in terms of socio-demographic variables such as age, gender,
household type, etc. The replacing step aims to overcome the limited sample size of the
survey, making sure that the corrected survey data can match the tax data up until the nar-
rowest top income groups, while otherwise preserving the distribution of covariates and their
dependency with income. We apply these two steps in a way that preserves the microdata
structure of the survey, assuming no reranking of survey observations. This latter assump-
tion is made as a consequence of our inability to observe misreporting at the individual level
(a rare phenomenon to observe with standard anonymous data). This may affect the location
of the merging point, the size of the adjustment and the accuracy of the resulting distribution
of covariates. These are all discussed in detail below.



The weight of the rich: improving surveys using tax data

We illustrate the method with two different types of applications. First, since the true dis-
tribution of income and wealth is always unknown, we simulate artificial populations, from
which we draw surveys with two types of biases: heterogeneous response rates, and misre-
porting. We use these experiments to assess the accuracy and precision of our method and
to compare its estimates to those derived from both the raw sample and the most common
alternative methods that use external data — namely methods that directly replace survey
incomes with tax incomes for the same quantiles in the distribution. We demonstrate that
our method is superior to available options, not only because it relies on more reasonable
assumptions and enables the use of resulting microdata sets (unlike the usual “replacing”
alternative), but also because it produces estimates that are consistently closer to true values
with lower variance.

In our second application, we apply our method to real data from five countries: France,
the United Kingdom, Norway, Brazil and Chile. Our case studies are chosen to showcase
the applicability of the method to both developed and less developed countries. The method
makes upward revisions to inequality estimates in all cases, with varying degrees of mag-
nitude, depending on the quality of the underlying data and the level of inequality in each
country. It can also produce differing inequality trends. Moreover, our empirical results sup-
port the findings of our simulations concerning the difference between our method and the
replacing alternative.

For practical use, we have developed a Stata command that applies our method. The
program works with several input types, income concepts and statistical units, ensuring
flexibility for users.1 The main goal of this paper is to describe the theoretical and practical
details behind this readily usable method, as well as its advantages with respect to existing
approaches, and limitations.

The remainder of the paper is structured as follows. In Section 2 we relate our paper to
the existing literature. In Section 3 we lay out the theoretical framework of our method. This
is followed by applications to simulated distributions and practical applications to specific
countries in section 3. In Section 5, we discuss the limitations of our method and some
guidelines for future research, before concluding.

2 Literature on survey correctionmethods

Numerous studies have adjusted survey data to improve their representativeness and produce
a more accurate distribution of income, sometimes using administrative data. We iden-
tify three methodological strands present in this literature. The first strand reweight survey
observations. The second strand replaces the income value of observations with a value typ-
ically drawn from a parametric distribution or an external data source. Finally, a third strand
identifies the need to employ a hybrid procedure by combining reweighting and replacing.

2.1 Reweighting observations

The studies that focus on reweighting usually formalize the underrepresentation of top
incomes as the result of nonresponse. Many papers in this literature estimate a parametric

1The package to download is bfmcorr for the correction method, which includes two sub-commands:
postbfm for the post-estimation output and bfmtoy for parametric simulations. The command and its
sub-commands come with a full set of user instructions.
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model of nonresponse to adjust survey weights, but do not use direct data on the distribu-
tion of income. Korinek et al. (2006) make this type of adjustment using nonresponse rates
across geographic areas and the characteristics of respondents within regions. This type of
approach can be sensitive to the degree of geographic aggregation used calculating response
rates. This is an issue explored in more detail by Hlasny and Verme () respectively for the
United States and Europe, using similar probabilistic models. Depending on the nature of
the survey data, greater or lesser geographic disaggregation levels are appropriate.

Crucially, these models do not use direct information on the income distribution —
often due to lack of availability. Instead, they have to infer relationships between individual
nonresponse and individual characteristics based on aggregated data. Because they cannot
isolate and observe certain groups directly, it can be difficult with these methods to esti-
mate the behavior of very specific groups that make up a large fraction of inequality, such
as the top 1%. Our proposal instead makes use of direct administrative data to determine the
relationship between income and nonresponse.

There are a few studies in this literature that combine surveys with external sources to
measure inequality. An example of this is the case study of Argentina in Alvaredo (2011),
in which the corrected Gini coefficient is estimated by assuming that the top of the survey
distribution (top 1% or top 0.1%) completely misses the richest individuals that are rep-
resented in tax data. This accounts for underrepresentation of top incomes via an implicit
reweighting procedure on the entire survey. However, the assumed nature of the underrep-
resentation is highly stylized: the survey is perfectly representative until a predetermined
quantile, and fails to include anyone beyond it. Furthermore, in both of the empirical appli-
cations (the United States and Argentina) the threshold beyond which the tax data is used is
chosen arbitrarily. Our method, on the other hand, tries its best to avoid arbitrary choices on
the portion of the survey distribution to be corrected or on the form of the bias implied by
the correction.

To our knowledge the paper that comes closest to ours, in terms of criteria and method-
ology, is Medeiros et al. (2018) applied to Brazilian data. That is, it is the only study that
combines tabulated tax data with survey micro data by explicitly reweighting survey obser-
vations. More specifically, the authors apply a Pareto distribution to incomes from the tax
tabulation to correct the top of the income distribution calculated from the census. Their
method involves reweighting the census population by income intervals above a specified
merging point.

However, important differences remain. Contrary to our method, the choice of the merg-
ing point is not endogenous, but chosen by the authors. Thus, multiple points can be used,
and indeed the authors test two. Our method endogenously determines a single merging
point based on a more comprehensive treatment of how the representativeness of the popu-
lation varies with income. Importantly, our approach preserves the continuity of the density
of income — something that only our specific choice of the merging point can ensure. To
guide their choice of the merging point, the authors look at the rank at which income in the
tax data exceeds that of the survey. However, such a point is not theoretically well defined
(see our discussion in Section 3.1.2 and in Appendix A.3).

Moreover, while they increase the weight of observations above the merging point, they
do not reduce the weight of individuals below this point, such that the corrected popula-
tion ends up being larger than the original official population. The authors do not provide
a way to ensure the representativeness of characteristics other than income after the adjust-
ment either — their purpose is solely to remedy the underestimation of top incomes.
Moreover, their method does not remedy the lack of precision at the top of the distri-
bution arising from sampling limitations, resulting in downward biased income shares of
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narrow income groups, especially in small samples. In contrast, our method addresses all of
these issues.

2.2 Replacing incomes

The general feature of the “replacing” approach is that it involves the direct replacing of
survey income with income from tax data. Although there is no unified theory or explicit jus-
tification behind the applications of this adjustment procedure, most of these methods share
some defining characteristics. In practice, they generally adjust distributions by replacing
cell means in the survey distribution of income with those from the tax distribution for the
same sized cells (i.e., fractiles) of equivalent rank in the population. The size of the cells
varies by study (Burkhauser et al. 2016; Piketty et al. 2017; Chancel and Piketty 2017;
Czajka 2017). Furthermore, the overall size of the population group whose income is to be
adjusted is sometimes chosen arbitrarily, such as the top 20% in the distribution (Piketty
et al. 2017), the top 10% (Burkhauser et al. 2016; Chancel and Piketty 2017), the top 1%
(Burkhauser et al. 2016; Alvaredo 2011), or the top 0.5% of survey observations (DWP
2015).

This decision can be made less arbitrarily by comparing thresholds or average incomes by
fractile in the two distributions. The size of the group is then chosen as the point in the distri-
bution where the two quantile functions cross (e.g., Czajka (2017)). However, the definition
of this point is problematic (see our discussion in Section 3.1.2 and in Appendix A.3).

Other non-arbitrary choices include the minimum income level that requires mandatory
tax filing (Diaz-Bazan 2015). This keeps the use of survey data to measure the top of the
income distribution to a strict minimum, and assumes that the entire tax distribution is reli-
able. We argue, however, that not all the income in tax data should be considered reliable,
given the difference between declarable income thresholds and taxable income thresholds.
The quality of tax data generally increases with income in a manner that is often not well
defined, and given this uncertainty it makes sense to limit their use to the portion that is
absolutely necessary.

In certain cases, the survey distribution stops being reliable before the tax data can be
trusted. This happens in particular in countries where only a small part of the population
file a tax return. In such cases, from the point at which we stop trusting the survey to the
point at which we start trusting the tax data, researchers progressively rescale upwards the
income values from the survey distribution, using various profiles of rescaling coefficients
(usually linear) (Chancel and Piketty 2017; Piketty et al. 2017; Novokmet et al. 2018). This
procedure ensures at least that the quantile function is continuous. These rescaling methods
can be seen as an extension of the usual replacing methods (and face similar issues).

2.3 Combined reweighting and replacing

Some voices stress the need to combine the aforementioned correction approaches. Bour-
guignon (2018), while reviewing the typical adjustment methods employed, highlights that
any method must dwell on three important parameters: the amount of income to be assigned
to the top, the size of this top group, and the share of the population added to the top in the
survey. The definition of these three parameters implies a correction procedure combining
reweighting and replacing methods. His analysis goes on to study the ways in which these
choices impact the adjustments made to the original distribution. However, this analysis
does not shed light on how to make these choices. Moreover, in reviewing multiple cor-
rection methods and applying them to Mexican survey data (including the combined case,
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where all three parameters mentioned take non-zero values), he only considers the situa-
tion “where nothing is known about the distribution of the missing income, unlike when
tax records or tabulations are available” (Bourguignon 2018). Our approach for correcting
survey microdata combines the two previous methods, and seeks to determine how to make
these choices by explicitly comparing the survey and the tax data distribution.

3 Theory andmethodology

We describe our method in three steps: first is the choice of the merging point, second is the
reweighting step, and third is the replacing step.

3.1 Merging point

The choice of merging point is the key innovation of our approach. We argue that by look-
ing at how the representativeness of the survey varies with income, we can locate a single
merging point that satisfies elementary requirements. That is, our choice of merging point is
the only way to ensure that (i) the representativeness of the survey varies continuously with
income, that (ii) the representativeness decreases monotonously for top incomes and that
(iii) income groups below the merging point are homogeneously represented, and therefore
the survey should not be distorted below that point.

We start by formalizing our notion of representativeness by income, by explaining its
properties and our assumptions. Then, we explain how we define and estimate our merging
point.

3.1.1 General setting

Survey vs. Tax Data Distribution Let X and Y be two real random variables. We will use
Y to represent the “true” (tax data) income distribution, and X to represent the income
distribution recorded in the survey. Each random variable has a probability density function
(PDF) fY and fX , a cumulative probability function (CDF) FY and FX , and a quantile
function QY and QX .

Since every individual in the income earning population does not file a tax return, we
assume that the tax data only covers a portion of the true income distribution. In reality,
however, part of the actual income of this subset of the population may also be missing from
the tax data due to tax-exempt income, the subtraction of certain deductions, as well as tax
evasion. The extent of these omissions varies by country. As does the presence of top coding
in micro-level datasets.2 Since our methodology does not in itself correct for these issues,
we urge users to scrutinize the definitions and coverage of income in both data sources prior
to combining the information.

2If incomes in the survey data are top-coded, our methodology can at least partially address the issue. The
difficulty arises from the fact that with top coding, information on the ranking of observations above a
certain threshold is lost, which makes it difficult to know how other variables vary with income at the top.
The replacing step of our method will fix the top-coding problem from the perspective of the univariate
distribution of incomes, but information about the covariates may be of limited use. Note that the same could
be said of the raw survey.
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Definition of Representativeness Let θ(y) = fX(y)/fY (y) be the ratio of the survey den-
sity to the true density at the income level y. This represents the number of people within
an infinitesimal bracket [y, y + dy] according to the survey, relative to the actual number of
people in the bracket. If θ(y) < 1, then people with income y are underrepresented in the
survey. Conversely, if θ(y) > 1, then they are overrepresented. In general terms, this ratio
indicates over- or underrepresentation of people at a given income level.

The value of θ(y) may be interpreted as a relative probability of inclusion in the survey.
Indeed, let D be a binary random variable that denotes participation in the survey: if an
observation is included in the sample, then D = 1, otherwise D = 0. Bayes’s formula
implies:

θ(y) = fX(y)

fY (y)
= 1

fY (y)
× fY (y)

P{D = 1|Y = y}
P{D = 1} = P{D = 1|Y = y}

P{D = 1} (1)

If everyone has the same probability of inclusion, then P{D = 1|Y = y} = P{D = 1}, and
θ(y) = 1. Hence fX(y) = fY (y) and the survey is unbiased. What matters for the bias is the
probability of inclusion at a given income level relative to the average inclusion rate, which
is why we have the constraintE[θ(Y )] = 1. Intuitively, if some people are underrepresented
in the survey, then mechanically others have to be overrepresented, since the sum of weights
must ultimately sum to the population size. This elementary constraint has important con-
sequences for how we think about the adjustment of distributions. Any modification of one
part of the distribution is bound to have repercussions on the rest. In particular, if the “rich”
are underrepresented, then the “non-rich” as a whole must be overrepresented — even if
the relative sizes of the different “non-rich” subgroups remain valid (and thus the survey is
“correct” for the bottom).

Figure 1 represents the situation, in the more common case where θ(y) is lower for top
incomes. We show a truncated version of fY since tax data often only cover a limited part
of the whole distribution. The fact that the dashed red line fY (y) is above the solid blue line
fX(y) for top incomes means that they are underrepresented. Therefore, lower incomes must

Fig. 1 A “true” and biased income distribution. The solid blue line represents the survey density fX . The
dashed red line represents the tax data density fY , which is only observed at the top. For high incomes, the
survey density is lower than the tax data density, which means that high incomes are underrepresented. If
some individuals are underrepresented, then others have to be overrepresented: they correspond to people
below the point y∗
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be overrepresented, which is what we see below the point y∗. An appropriate correction
procedure here would be to increase the value of the density above it, and decrease its value
below it. This can be achieved by reweighting, in which multiply the survey density fX by
a factor 1/θ(y) to make it equal to the true density fY . In practice, this means multiplying
the weight of any observation Yi by 1/θ(Yi).

Assumptions on the Rate of Representativeness When we observe both fY and fX, we
can directly estimate θ nonparametrically. But because we do not observe the true density
over the entire support, we have to make an assumption on the shape of θ for values not
covered by the tax data. We will assume a constant value, an assumption that we justify
below. This baseline assumption implies first-order stochastic dominance of the survey over
the tax distribution. However, as we show in Appendix A.2, our merging point is robust to
violations of this assumption. We can write the complete profile of θ as:

θ(y) =
{

θ̄ if y < ȳ

fX(y)/fY (y) if y ≥ ȳ
(2)

We call ȳ the merging point. It is the value above which we merge information from the
tax data into the survey. The key aspect of our approach is that this point is endogenously
determined by our methodology, not arbitrarily chosen by the researcher: we will return to
it in Section 3.1.2. For now we will take ȳ as given, and only assume that it is below the
pivotal point y∗ of Fig. 1. Figure 2 shows how the reweighting using Eq. 2 operates.

Let f̃X be the reweighted survey, i.e. f̃X(y) = fX(y)/θ(y). By construction, we have
f̃X(y) = fY (y) for y ≥ ȳ. As indicated by upward arrows on the right of Fig. 2, the density
has been increased for y > y∗. Since densities must integrate to one, values for y < y∗
have to be lowered. The uniform reweighting below ȳ creates the dotted blue line. Note
that we decrease the weight of observations between ȳ and y∗, but by an amount that gets
progressively lower, from θ̄ at ȳ to 1 at y∗.

Fig. 2 The intuition behind reweighting. The solid blue line represents the survey density fX . The dashed
red line represents the tax data density fY . Above the merging point ȳ, the reweighted survey data have the
same distribution as the tax data (dashed red line). Below the merging point, the density has been uniformly
lowered so that it still integrates to one, creating the dotted blue line
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Note that this assumption on the shape θ(y) makes no restriction on the shape of fX

or fY separately. However, given the shape of fX , it limits the shape that can be taken
by fY , and vice-versa. In particular, one should not expect that a given θ(y) would pre-
serve membership to a given parametric family of distribution, such as the log-normal
family.3

Interpretation How should we interpret the assumption that θ is constant below ȳ? There
are two key motivations. First, as we present in Section 4, there is evidence that it is empiri-
cally verified. Second, this assumption results from our wish to introduce no more distortion
than necessary to the survey data. That is, in the absence of any other piece of evidence, we
trust that the survey correctly captures the relative size of the different subgroups of the bot-
tom of the distribution, so that the overrepresentation of the non-rich is only the counterpart
of the underrepresentation of the rich.

Assuming that there are also large variations of θ at the bottom means assuming that the
survey is deficient for both the bottom and the top of the distribution. This situation would
be difficult to fix with our data, and in any case would be outside of the scope of the paper.
We nonetheless address this issue Appendix A.2, and show that our method retains good
properties even if this assumption is violated. Note that if we assume that the very poor
are also underrepresented, so that θ has an inverted U-shape, then our correction will still
underestimate the true level of inequality.

3.1.2 Choice of the merging point

Trustable Span For many countries, tax data only covers the top of the distribution. We
use the term trustable span to name the interval over which the tax data may be considered
reliable. It takes the form [ytrust,+∞[. This interval is determined by country-specific legis-
lation. We suggest two rules of thumb for the choice of this interval: the portion of the entire
distribution covered in the tax data (i.e. declarations) or just the portion of the distribution
that pays income tax (i.e. taxpayers).

When choosing the merging point ȳ, it may be tempting to use the tax data over the entire
trustable span (i.e., set ȳ = ytrust), but this will often lead to poor results. First, such choices
would generally lead to undesirable features, such as a discontinuous θ . Moreover, the point
from which the tax data become reliable is not usually sharp — the reliability of the tax
data increases with income in a way that is not well defined, therefore it is more prudent
to restrict their use to the minimum that is necessary. Second, once we are past the point
where there is clear evidence of a bias, we should prefer to avoid unnecessarily distorting
the survey.

Location of theMerging Point We suggest a simple, data-driven way for choosing a merg-
ing point with desirable properties. In particular, we seek to preserve the continuity of the
underlying density function after reweighting. We start from the typical case where ȳ is
inside the trustable span [ytrust,+∞[. In Appendix B we consider cases where the trustable
span may be too small to observe an overlap between the densities.

3Doing so would require very specific parametric assumptions to θ(y) below ȳ, for which direct evidence
would be hard to come by.
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Assume that the function θ(y) follows the form in Eq. 2. We introduce a second function,
the cumulative rate of representativeness, defined as:

�(y) = FX(y)

FY (y)
(3)

In Fig. 3, we examine the shape of θ(y) and �(y) in relation to the density functions pre-
sented in Fig. 2. We have the relationship �(y)FY (y) = ∫ y

−∞ θ(t)fY (t) dt . Given (2), for
y < ȳ, �(y) = θ̄ . As Fig. 3 shows, we should expect the merging point ȳ to be the highest
value y such that �(y) = θ(y).

Comparison with Alternative Procedures We can contrast this choice of merging point
with the one implicitly chosen in at least some replacing approaches: the point at which
the quantile functions of the survey and the tax data cross. In our view, there are two main
issues with this approach, for which we provide technical details and formal proofs in
Appendix A.3.

First, the existence of this point is not guaranteed. In fact, as we prove in Appendix A.3,
if we assume that the rate of representativeness is a decreasing function of income, then this
point should not exist: the survey quantile function is always below the true quantile (i.e.,
the true distribution stochastically dominates the survey distribution). In contrast, as we
show in Appendix A.2, our merging point exists regardless of whether the true distribution

Fig. 3 Choice of Merging Point when ȳ ≥ ytrust
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stochastically dominates the survey distribution (even though the correction will remain
imperfect unless assumption (2) holds).

Second, whenever researchers use this point, they are making implicit assumptions about
the shape of the representativeness rate θ that are quite unrealistic. Indeed, as we explain in
Appendix A.3, this alternative choice of merging point leads to a rate of representativeness
θ that is both discontinuous and nonmonotonous at the top. We stress that this is an issue
regardless of the interpretation we make of θ —whether it is a response rate or the result of
something more complex. In all cases we should expect θ to remain somewhat regular.4

It is worth stressing that our choice of merging point is, by construction, higher than the
point at which the quantile functions of the survey and the tax data cross. Indeed, we assume
that there are fewer people in the survey than in the tax data above our merging point. But
when choosing the point at which quantiles cross, one assumes that there are as many people
in the survey and in the tax data above the merging point. Therefore, there is a fraction of
people that must be assumed to be overrepresented in the survey (relative to the very bottom)
above that merging point, which can only happen by selecting a lower merging point.

Thus, one key distinction between our approach and the crossing quantiles approach is
that we assume that the probability mass that corresponds to the underrepresented rich is
spread relatively evenly below the point at which densities cross (as it would happen in a
nonresponse model or in a misreporting model such as the one described in Appendix A.1).5

The crossing quantiles approach, on the other hand, assumes that this mass is concentrated
right below that point. Our method is therefore more conservative and induces fewer overall
distortions of the survey data. But to the extent that the missing rich at the top are indeed
concentrated right below y∗, it will undercorrect.

Estimation of the Merging Point We can estimate both θ(y) and �(y) over the trustable
span of the tax data. To determine the merging point in practice, we look for the moment
when the empirical curves for �(y) and θ(y) cross.

The estimation of �(y) poses no difficulty as it suffices to replace the CDFs by their
empirical counterpart in Eq. 3 to get the estimate �̂k . For θ(y), however, we have to esti-
mate densities. We define m bins using fractiles of the tax data distribution (from 0% to
99%, then 99.1% to 99.9%, then 99.91% to 99.99% and 99.991% to 99.999%). We approx-
imate the densities using histogram functions over these bins. This gives a first estimate for
each bin that we call (θ̃k)1≤k≤m. The resulting estimate is fairly noisy, so we get a second,
more stable one named (θ̂k)1≤k≤m using an antitonic (monotonically decreasing) regression
(Brunk 1955; Ayer and et al. 1955; van Eeden 1958). That is, we solve:

min
θ̂1,...,θ̂m

m∑
k=1

wk(θ̂k − θ̃k)
2 s.t. ∀k ∈ {2, . . . , m} θ̂k−1 ≥ θ̂k

where wk is the size of bin k (i.e., the fraction of the true population covered by that bin).
We solve the problem above using the Pool Adjacent Violators Algorithm (Ayer and et al.
1955). The main feature of this approach is that we force (θ̂k)1≤k≤m to be decreasing. This
turns out to be enough to smooth the estimate so that we can work with it, without the need
introduce additional regularity requirements. We use as the merging point bracket the lowest
value of k such that θ̂k < �̂k .

4See Appendix A.1 for a formalization of the problem with both nonresponse and misreporting.
5Though not perfectly evenly given the nonconstant θ between ȳ and y∗.
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3.2 Reweighting

Once we have chosen an appropriate merging point, we still need to provide a concrete
approach for correcting the survey. For that we proceed in two steps: the first one is the
reweighting step, which we present here.

We stress that it is not enough for the survey to be solely representative in terms of
income, we also need to preserve (or possibly enforce) representativeness in terms of other
variables such as age, gender, household type, ethnicity, etc. To that end, we adapt a method
that is already routinely used by statistical agencies to enforce the representativeness of
survey data along several dimensions simultaneously: calibration theory. We start with a
general presentation of linear survey calibration, then we explain we apply it to our problem.
In Appendix B, we discuss potential extensions of the calibration method to deal with more
complex settings, which illustrate the flexibility of the framework. In particular the method
is flexible enough to incorporate covariate information from tax data into the survey.

Problem Survey calibration considers the following problem. We have a survey sample of
size n. Each observation is a k-dimensional vector xi = (x1i , . . . , xki)

′. The sample can be
written (x1, . . . , xn), and the corresponding survey weights are (d1, . . . , dn). We know from
a higher-quality external source the true population totals of the variables x1i , . . . , xki as
the vector t . We seek a new set of weights, (w1, . . . , wn), such that the totals in the survey
match their true value, i.e.,

∑n
i=1 wixi = t .

This problem will in general have an infinity of solutions, therefore survey calibration
introduces a regularization criterion to select the preferred solution out of all the differ-
ent possibilities. The idea is to minimize distortions from the original survey data, so we
consider:

min
w1,...,wn

n∑
i=1

(wi − di)
2

di

s.t.
n∑

i=1

wixi = t (4)

That is, we minimize the χ2 distance between the original and the calibrated weights, under
the constraint on population totals: this is called linear calibration. While alternative dis-
tances are sometimes used, linear calibration is advantageous in terms of analytical and
computational tractability.

Solution Solving the problem (4) leads to:

wi

di

= 1 + βxi (5)

where β is a vector of Lagrange multipliers determined from the constraints as:

β = T −1

(
t −

n∑
i=1

dixi

)
with T =

n∑
i=1

dixix
′
i

where the matrix T is invertible as long as the constraints are neither redundant nor incom-
patible.6 One undesirable feature of linear calibration is that it may lead to weights below

6In practice, we use the Moore–Penrose generalized inverse to circumvent these problems.
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one or even negative, which prevents their interpretation as an inverse probability and is
incompatible with several statistical procedures. Therefore, in practice, we enforce the con-
straints wi ≥ 1 for all i using a standard iterative method described by Singh and Mohl
(1996, method 5). This is known as truncated linear calibration.

Interpretation This procedure can be interpreted in terms of a nonresponse model. In this
context, the survey weights are the inverse of the probability of inclusion in the survey sam-
ple. This probability of inclusion is the product of two components. The first one depends
on whether a unit is selected for the survey, regardless of whether that unit accepts to
answer or not. We note Di = 1 if unit i is selected, and Di = 0 otherwise. The value
δi = 1/P{Di = 1} is called the design weight. The design weight in constructed by the
survey producer and therefore known exactly. The second component depends on whether
a unit contacted for the survey accepts to answer or not. We note Ri = 1 if unit i accepts
to participate in the survey, and Ri = 0 otherwise. The value ρi = 1/P{Ri = 1} is called
the response weight. Since both Di and Ri must be equal to 1 for a unit to be observed, the
final weight is the product of these two components, δiρi .

Nonresponse is unknown so it has to be estimated using certain assumptions. The sim-
plest one is that ρi is the same for all units, therefore all weights are upscaled by the same
factor so that their sum matches the population of interest. More complex models use infor-
mation usually available to the survey producer, that is, basic socio-demographic variables
which we will write Ui . The survey producer models nonresponse as a function of these
variables: ρi = φ(Ui) and provides weights equal to δiφ(Ui). If nonresponse is also a
function of income, which is not observed by the survey producer, then the estimated non-
response will fail to accurately reflect true nonresponse, leading to biased estimates of the
income distribution. Using the tax data Yi , we can estimate a new model that takes income
into account: ψ(Ui, Yi). The final weight becomes:

wi = 1

P{Di = 1}
1

P{Ri = 1}
= 1

P{Di = 1}ψ(Ui, Yi)

= δiφ(Ui) × ψ(Ui, Yi)

φ(Ui)

= di × ψ(Ui, Yi)

φ(Ui)
(6)

Comparing Eqs. 5 with 6, we see that the calibration problem suggests both a functional
form and an estimation method for ψ(U i ,Y i )/φ(U i ). This functional form assumes non-
response profiles that are as uniform (thus nondistortive) as possible, and only modify the
underlying distribution if it is necessary to do so. The preference for nondistortive functional
forms is consistent with our decision to impose a constant value for θ below the merging
point.

Application to Income Data The calibration problem is presented so as to enforce the
aggregate value of variables. In order to use it to enforce the distribution of a variable,
we have to discretize this distribution. In the case of income tax data, the income distri-
bution may be presented in various tabulated forms, and we use the generalized Pareto



T. Blanchet et al.

interpolation method of Blanchet et al. (2017) to turn it into a continuous distribution.7 We
output the distribution discretized over a narrow grid made up of all percentiles from 0% to
99%, 99.1% to 99.9%, 99.91% to 99.99% and 99.991% to 99.999%. We discard tax brack-
ets below the merging point, whose choice is described in Section 3.1.2. We then match the
survey data to their corresponding tax bracket. In general, it is necessary to regroup cer-
tain tax brackets to make sure that we have at least one (and preferably more) observations
in each bracket. Otherwise the calibration will not be possible. We automatically regroup
brackets to have a partition of the income distribution at the top such that each bracket has
at least 5 survey observations.8

Assume that we eventually get m brackets, with the k-th bracket covering a fraction pk

of the population. We create dummy variables b1, . . . , bm for each income bracket. If the
total population is N and the sample size is n, then the calibrated weights should satisfy:

∀k ∈ {1, . . . , m}
n∑

i=1

wibik = Npk

Since these equations are expressed as totals of variables, they can directly enter the calibra-
tion problem (4). In practice, we are enforcing the income distribution through a histogram
approximation of it.

The flexibility of the calibration procedure lets us put additional constraints in the cal-
ibration problem. In particular, if the survey is already assumed to be representative in
terms of age, gender, or any other variable, then their distribution can be kept constant
during the procedure. Hence we correct for the income distribution while maintaining the
representativeness of the survey along the other dimensions.

For all the observations below the merging point, the dummy variables b1, . . . , bm are
all equal to zero, so the weight adjustment only depends on a constant and possibly other
calibration variables such as age and gender, but not income. This matches the uniform
adjustment profile (2) at the bottom of the distribution that we present in Section 3.1.1. The
calibration, by construction, avoids distorting the bottom of the distribution because it is not
necessary to enforce the constraints of the calibration problem.

In practice, we also constrain the number of times the weights are expanded or reduced
to avoid disproportionate adjustments to single observations already in the data set.9 To that
end, we first impose the condition that brackets with a θ(y) outside the boundary defined
by 1/α ≤ θ(y) ≤ α are automatically grouped into larger brackets, until they satisfy the
range restriction. Then, we enforce that same condition within the calibration algorithm
using the iterative procedure described in (see e.g. Singh and Mohl 1996, method 5), known
as truncated linear calibration, the same procedure we use to enforce that weights remain
above 1. The default limit we choose is α = 5. Thus, in this case, no observation would
have their weight multiplied by more than 5 times or less than 0.2 times. Finally, to ensure
convergence of the most salient margin (the number of people above the merging point)

7See wid.world/gpinter for an online interface and a R package to apply the method.
8That is, whenever a bracket in the tax data has fewer than 5 survey observations, the algorithm groups this
bracket with the bracket just above. (Except for the top bracket, for which we group with the bracket just
below.) This process is repeated until no bracket has fewer than 5 survey observations. The value of 5 is an
argument of our command that can be changed.
9The practice is common in survey calibration: the rationale behind it is that strong adjustments of small
subgroups lead to worse small-sample properties for the resulting survey data.

wid.world/gpinter
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with perfect numerical accuracy, we polish the solution of the truncated linear calibration
algorithm: we further reweight the observations uniformly below and above the merging
point to match perfectly the number of people above the merging point according to the tax
data.

We stress that, unlike the method for finding the merging point, for the calibration algo-
rithm we do not impose any assumption on the shape of θ above the merging point. On
the contrary, we use the empirical estimates that result from comparing actual data to make
adjustments. Although θ coefficients are typically decreasing with rank and lower than one
(on average) above a certain threshold, we can sometimes observe points that deviate from
the general trend, taking values above one. That is, even in the right tail of the distribution,
we can observe a local overestimation of densities, which we often see when there is bunch-
ing close to round values in the survey. In these cases, our algorithm also adjusts weights to
match the tax data, without imposing any specific shape.10

3.3 Expanding the support

After applying the methods of the previous sections, the survey should be statistically indis-
tinguishable from the tax data. However, the precision that we get at the top of the income
distribution may still be insufficient for some purposes. Indeed, the number of observations
in the survey is still significantly lower than what we would get in theory from adminis-
trative microdata. The extent to which this represents a problem varies. For tasks such as
regression analysis, the reweighting step is probably sufficient. But problems may arise if
we wish to produce indicators of inequality, especially the ones that emphasize the top of
the distribution, like top income shares. The combination of a low number of observations
with fat-tailed distributions can create small sample biases for the quantiles and top shares
(Okolewski and Rychlik 2001; Taleb and Douady 2015), and skewed distributions of the
sample mean (Fleming 2007). In most cases, we would underestimate levels of inequality.

Unlike problems caused by, say, heterogeneous response rates, these biases are part of
sampling error. They do not reflect fundamental issues with the validity of the survey, but
arise purely out of its limited sample size. The calibration method (Section 3.2) does, to
some extent, reduce sampling error. Yet it only does so under asymptotic conditions (Deville
and Särndal 1992) that cannot hold for narrow groups at the top of the income distribution.
For this reason, we prefer to consider that the role of survey calibration in our methodology
is to deal with non-sampling error. We use a different approach to deal with sampling error.

In particular, we aim to solve the case where tax statistics include income declarations
beyond the survey’s support. That is, we need to account for individuals declaring higher
income than the richest persons in the surveys, which cannot be accounted for by reweight-
ing observations. To do so, we start from the original tax tabulations, which were created
from the entire population of taxpayers and should therefore be free of sampling error. We
use it alongside a generalized Pareto interpolation to estimate a continuous income distribu-
tion (Blanchet et al. 2017) that reproduces the features of the tax data with high precision.
We then statistically match the information in the calibrated survey data with the tax data
by preserving the rank of each observation.

10There is only one case where we assume a pattern. These are extreme cases, for which the tax data covers
too small a share of the population to reach the merging point. In such a setting, we assume a monotonously
decreasing pattern of ratios in the right tail (see the example of Chile in Section 4.2.1).
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More precisely: we inflate the number of data points in the survey by making ki dupli-
cates of each observation i. We attribute to each new observation the weight qi = wi/ki ,
where wi is the calibrated weight from the previous step. We choose ki = [π × wi] where
[x] is x rounded to the nearest integer. Therefore all new observations have an approxi-
mately equal weight close to 1/π . The size of the new data set, made out of the duplicated
observations, can be made arbitrarily high by adjusting π , yet any linear weighted statistic
will be the same over both datasets.11

Let M be the number of observations in the new dataset. The weights are assumed
to sum to the population size N . We will associate to each of them a small share
[0, qj1/N ], [qj1/N, (qj1 + qj2)/N ], . . . , [∑M

k=1 qjk
/N, 1] of the true population. If we

attribute to each observation the average income of their population share in the tax data,
then by construction the income distribution of the newly created survey will be the same
as in the tax data. We rank observations in increasing order by income to preserve the joint
distribution between income and the covariates in the survey. This approach is very similar
to the one applied in Burkhauser et al. (2016).

Intuitively, this process can be described as replacing the income of observations beyond
the merging point with synthetic income observations with equivalent weight and rank in
the tax distribution. This step ensures that we reproduce exactly the income distribution
from tax data, that we preserve the survey’s covariate distribution (including the household
structure), and that we preserve the relationship between income and covariates from the
survey data.

4 Applications

In Section 4.1, we run Monte Carlo experiments in order to assess the accuracy of estimates
produced after applying both our adjustment method and the common replacing alternatives
found in the literature.12 In Section 4.2, we illustrate how the method operates with actual
household surveys and tax statistics, applying it to data from five countries (France, United
Kingdom, Norway, Brazil and Chile). These case studies showcase the broad applicability of
the method to both developed and less developed countries, covering different data quality.

4.1 Simulations

Our experiments start with the simulation of a “true” distribution with several million
individuals. We emulate a typical tax tabulation, which summarizes information on the rich-
est brackets of that distribution. We then draw a number of pseudorandom samples from
the original distribution, simulating surveys of a given share of the population each time,
which we adjust following both our method and replacing methods that are common in the
literature.

We simulate both misreporting and nonresponse biases in all of our samples. The for-
mer is defined by a probability of misreporting that is flat for most of the distribution and
increases linearly with the income rank for the top. The distribution of misreported income

11Our command uses a default sampling rate of 10%, i.e. a value π = 0.1. In practice lower values are less
demanding computationally for large countries and/or low merging points, with very limited impact in the
results.
12We choose the replacing alternative as it is the most prevalent one which uses external data to correct
surveys.
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is also defined to ensure a prevalence of underreporting over overreporting. Response rates
are flat for most of the distribution and fall linearly with the income rank for the top. In what
follows, we present the results of our benchmark experiment. We present in Appendix D
alternative experiments, conducted under different sets of parameters and assumptions.
These include alternative assumptions for each bias, variations in the replacing procedure,
the size of the replaced population and the coverage of the simulated tax data. However,
despite different — and sometimes extreme — assumptions, these experiments consistently
demonstrate that our algorithm is robust and capable of implementing adjustments that push
surveys closer to the true distribution when its right tail is biased.13

In our benchmark experiment, we study a population of 9 million individuals that are
randomly drawn from a standard lognormal distribution. We select a thousand random sub-
samples from it, whose size corresponds to 1% of the total population. The response rate,
conditional of being sampled, is 50% for most of the population; it then decreases from
percentile 90 (P90) onward and tends to 0 for the richest individual, resulting in a general
response rate of 47.5%. The probability of misreporting is 20% until the 95th percentile. It
then increases, approaching 100% at the very top. The probability of misreporting is close
to 22% on average and the distribution of misreported income is also a standard lognormal.

Concretely, in this experiment, all individuals in the simulated distribution have the same
probability of being surveyed (1 in 100), yet individuals have their own probability of
answering the survey and if they do answer, their response can be either accurate or mis-
reported. Therefore, although the surveyed sample is 1% of the population, only close to
0.5% of the population effectively reports income. Figure 4 graphically depicts the setup of
our benchmark experiment, for one of the random samples.

We apply our adjustment method, described in the previous section, and two alterna-
tive replacing procedure. The first replacing procedure that we consider simply consists in
replacing the 1% of the survey distribution with the tax data: we call it the replacing method
with a fixed merging point. We consider a second, more sophisticated procedure which we
call replacing with an endogenous merging point. This procedure automatically selects a
merging point by searching for the rank at which the quantiles of the survey and the tax data
distribution cross.

One difficulty in implementing that last procedure is that, as we have stressed earlier,
the existence of this “crossing point” is not theoretically guaranteed. In fact, under basic
assumptions for modeling the bias — such as the one described in the experiment above
— it does not exist. To be able to apply that method and compare it with in the others, we
therefore have to add an additional form of bias to the tax data. We multiply each bracket of
the tax data by a coefficient that grows linearly with the income rank from zero at the 50th
percentile of the tax data distribution, to one at the 90th percentile. (It is equal to zero for
the bottom 50% of the distribution, and one for the top 10%.) This coefficient models the
effect of low-income exemption and taxable minimum that make the tax data less reliable
below the top, and in fact explain why the “crossing point” tends to exist in practice. (We
use that modified tax tabulation to test all methods.)

Figure 5 compares the accuracy of distributional estimates that result from the raw sim-
ulated survey to those resulting from the application of both our method and replacing

13All our experiments were conducted using the bfmtoy command that comes with the bfmcorr Stata
package. Not only was it coded to be able to reproduce our experiments, but it also provides a tool for
researchers to simulate artificial distributions and change all the parameters involved in testing survey
adjustment methods.
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Fig. 4 Benchmark experiment set up

methods. It displays errors with respect to true values for a series of estimates. Kernel den-
sities present the distribution of measurements across all the 1000 replications. The true
values are: an average close to 1.6, a Gini coefficient close to 0.52, a top 1% share close to
9.3% and a top 10% share close to 39%.

Our method’s estimates tend to be more accurate than others, in that they exhibit less
bias (they are centered around the true value) and/or less variance (they are concentrated
in a narrower range of values). The replacing method with an endogenous merging point
performs better that the replacing method with a fixed merging point, especially in terms of
variance. But it always shows more bias that our method.

Although all adjustment methods operate differently, in purely distributional terms they
always reproduce at least the information on the top 1% that is found in tax data. That is,
after applying the adjustment, the average income of the top percentile is identical in all
cases. However, the same is not true for the rest of the distribution, and thus not for aver-
age income either. Indeed, Fig. 5a shows that even if the average income gets closer to the
true value with replacing methods, on average it still remains underestimated by 15% (fixed
merging point) and 5% (endogenous merging point), instead of 15% for the raw survey.
The lower total income explains why in Fig. 5b, the top 1% shares are systematically over-
estimated with replacing methods: because the numerator of the top share is the same in
both, but the denominator is underestimated. In the case of the top 10%, the two replacing
methods show errors in opposite directions (Fig. 5c). This is because the fraction of the dis-
tribution corrected by the fixed merging point approach is too small (top 1% only), whereas
with the endogenous merging approach that fraction is too large (usually more than the top
10%). When we focus on a synthetic indicator of inequality, such as the Gini coefficient,
we find a similar hierarchy of estimates (Fig. 5d).

Panel 5e shows the distribution of the merging points’ locations over the simulations, for
both our method and the replacing approach with endogenous merging point (i.e., the point
at which quantile functions cross). Our method chooses a merging point around the 90th
percentile (although across replications it may in fact be chosen a few percentiles below or
above), which is what we would expect given the parameters of our simulation. The merging
point for the other methods is generally lower, slightly below the 85th percentile. This is
consistent with our discussion of this approach in Appendix A.3.
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Fig. 5 Benchmark experiment results

4.2 Real data

Our method can be applied to all countries with survey micro data covering the entire
population and tax data covering at least a fraction of it. We experiment with five real dis-
tributions: three European countries and two less-developed Latin American countries. For
France, Norway and the United Kingdom, our analysis broadly covers the years 2004–2014.
For Brazil, we cover 2007–2015 and for Chile we include the years 2009, 2011, 2013 and
2015. Survey data for the three European countries is from the EU-SILC, for Brazil from
PNAD, and for Chile from CASEN. Tax data are sourced from the countries’ tax office
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statistics. Our inequality indicators measure gross (pretax) income of individuals (before
income taxes and employee social contributions), with the exception of the French series,
which measures income after employee contributions, given that tax data incomes are net of
these. Appendix E.1 and E.2 provide more details as to the data sources, data harmonisation,
and concepts used.

4.2.1 Empirical bias and corrected population

The Shape of the Bias Our method finds the merging point between surveys and tax data by
comparing the population densities at specified income levels, as explained in Section 3.1.2.
To do so we first interpolate the fiscal incomes in the tabulation using the generalized Pareto
interpolation developed by Blanchet et al. (2017), which allows for the expansion of the
tabulated income values into 127 intervals.14 Using the thresholds of these intervals, we can
construct our key statistics: the rate of representativeness θ(y) and the cumulative rate of
representativeness �(y) for individuals along the income distribution.

Figure 6 presents depictions of the shape of the empirical bias within the tax data’s
“trustable span” for all countries for the latest available year. First of all, the shape of the
bias we measure from the data is very similar to the one we expected from our theoretical
exposition, as depicted in Fig. 3.15 In particular, we always observe a convex shape in the
top tail, to the right of the merging point. It thus appears that surveys tend to increasingly
underrepresent incomes beyond a certain point in the distribution. For the more developed
countries (Norway, France and the United Kingdom), the shape of the empirical bias θ(y)

can be observed for a larger share of the population, due to the greater population coverage
in tax data. This enables us to empirically test the validity of our assumptions regarding the
rate of representativeness to the left of the merging point. We indeed observe on the left
side of Figs. 6a, b, and c, a general stability in the rate of representativeness, with averages
trending above one. The extent and quality of tax data below the merging point in less
developed countries are such that we cannot observe the same trends.16

The merging points found by our algorithm vary by country and by year, again revealing
differences in data quality and coverage between them. The Chilean case (Fig. 6e) provides
an example of our program needing to extrapolate the shape of the bias to find the merging
point (see Appendix C for more details of this procedure). For this case we rely on parame-
ters observed for Brazil (specifically, values for the elasticity of response to income) above
its trustable span as inputs for the Chilean extrapolation.17 The fit with the existing data
seems to work quite well.18

14These comprise 100 percentiles from P0 to P100, where the top percentile (P99–100) is split into 10 deciles
(P99.0, P99.1, . . . , P99.9-100), the top decile of the top percentile (P99.9–100) being split into ten deciles
itself (P99.90, P99.91, . . . , P99.99-100), and so forth until P99.999. This interpolation technique, contrary
to the standard Pareto interpolation, allows us to recover the income distribution without strong parametric
approximations.
15See also figures E.1, E.2, E.3, E.4 and E.5 in the Appendix.
16Tax enforcement issues affecting this portion of the distribution could be at play here, as well as the sharp
difference in incomes between the top and the rest in these countries leading to higher inequality levels than
developed countries.
17I.e., the value of the baseline elasticity of response to income, γ ∗

1 , extracted from the Brazilian data is -0.99.
18The empirical bias that is observed in previous years for all countries is presented in Appendix E.3.1.
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Fig. 6 Merging point in 5 countries, latest year. Notes: the figures depict the estimated bias in the survey
relative to the tax data. Gray dots are, for each quantile of the fiscal income distribution, the ratio of income
density in the survey over that of tax data. The green line is the centered average of θ(y) at each quantile
and eight neighboring estimates. The blue line is the result of an antitonic regression applied to θ(y). It
is constrained to be decreasing as it is used to find a single merging point. The blue dotted line, which
only appears in Fig. 6e, is an extrapolation of the trend described by θ(y) based on a ridge regression (see
Appendix C). The red line is the ratio of the cumulative densities. For details refer to Section 3.1.2
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Table 1 Structure of corrected population: latest year

Country Population over Merging Point Corrected population

(% total population)

Tax data Survey Total Share inside
survey support

Share outside
survey support

[2] [3] [4] = [2] − [3] [5] [6]

Chile 17.0% 11.1% 5.9% 99.99% 0.01%

Brazil 8.0% 5.3% 2.7% 99.0% 1.0%

UK 3.0% 2.5% 0.5% 93.6% 6.4%

Norway 5.0% 4.6% 0.4% 96.0% 4.0%

France 0.1% 0.05% 0.05% 99.0% 1.0%

The table orders countries by the size of the corrected population. Column [2] shows the proportion of the
population that is above this merging point in the tax data. Column [3] shows the proportion that is above the
merging point in survey data. The difference between the two is the proportion of the survey population that
is corrected (Column [4]). As explained in the text, we adjust survey weights below the merging point by the
same proportion. The corrected proportion above the merging point can be decomposed into the share of the
corrected population that is inside the survey support (up to the survey’s maximum income) and the share
that is outside the support (observations with income above the survey’s maximum). Brazil and Chile refer
to 2015, while all the European countries refer to 2014

Corrected Population Table 1 provides summary statistics on the population corrected by
our method, again using the last available year for each country as illustrations.19 A varying
proportion of the total population is adjusted at the top of the survey distribution in each
country (column [4] of Table 1), ranging from 5.9% in Chile to 0.05% in France for their
most recent years.20 This corresponds to the share of the population above the merging
point in the two datasets. But in both cases, the overwhelming majority that population
(over 90%) is located within the survey’s support, rather than outside the survey’s original
support, suggesting that nonsampling issues related to heterogeneous response rates matter
more than problems related to sampling for the size of the corrected population.

In general, this step of the algorithm is a useful guide to assess the income coverage
of surveys across countries. For instance, it appears on the basis of our analysis that the
Brazilian surveys do a better job at capturing gross income, given the lower share of the
underrepresented population, than the Chilean household surveys. Moreover, comparing
France and the United Kingdom, it seems that sampling error is greater in the UK surveys,
given the higher share of the population beyond the survey’s maximum income that needs
to be added. Non-sampling error itself is greatest in Chile, derived from the share of the
corrected population found inside the survey’s support.

19See Appendix E.2.2 for other years.
20Across years there is less variation in this share, with Norway and particularly France being relative excep-
tions. In the French case, we believe the significant break in the series is due to the use of register data in
EU-SILC alongside the household survey from 2008. Despite the EU-SILC survey making use of register
data, the goal is not to over-sample the top of the distribution, but rather to improve the precision of responses.
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4.2.2 Results

We compare the results our approach with the one that simply consists in replacing the top
1%. The latter corresponds to the procedure reproduced in the simulation in Section 4.1,
whereby the top 1% of the survey distribution is directly replaced by the top 1% of the
tax distribution. We present results on top 1% income shares, Gini coefficients and average
incomes.21

Top Income Shares In line with the improved income coverage that our method produces
— by more accurately including upper incomes — estimates of the income concentrated at
the top of the distribution are revised upwards in all countries. The size of the adjustment,
however, varies by country. Figure 7 depicts this for the Top 1% share.22 Brazil has the most
extensive correction, with a top 1% share that increases by about 10 percentage points every
year (Fig. 7d). Conversely, France and Norway experience relatively smaller adjustments,
starting from relatively lower levels of inequality. In addition, Brazil offers the clearest
illustration of the distinct trends in inequality that can emerge after making a correction
to the survey’s representation of income. While the raw survey depicts falling top income
shares, the corrected survey distribution shows slightly increasing top shares. Distinct trends
are also visible, albeit for shorter periods of time, in the other countries.

When we compare the size of the adjustment in Chile and Brazil (Fig. 7d and e respec-
tively), two highly unequal Latin American countries, the latter has a considerably higher
adjustment. One of the reasons that could be behind this phenomenon is the fact that cap-
ital income, especially dividends, is better recorded in Brazilian tax statistics. Indeed, the
Brazilian tax agency has relatively good means to verify the accuracy of capital income dec-
larations (Morgan 2018), while Chilean tax authorities are generally constrained by bank
secrecy (Fairfield and De Luis 2016). In this case, the limited quality of Chilean tax statistics
explains the smaller correction.23

Following the same rationale, the inclusion or exclusion of some types of income in a
given data set can also affect the size of the correction. In the case of Norway, tax incentives
started favoring the retention of corporate profits inside corporations after 2005, with the
creation of a permanent dividends tax in 2006. This resulted in less dividend payments, and
thus less income to be registered as personal income in tax data. The reform also gave strong
incentives for higher-than-normal dividend payouts in 2005, which contributed to the sharp
increase in top shares observed for this year (Aaberge and Atkinson 2010; Alstadsæter et al.
2016). In Fig. 7b, it can be clearly perceived that the size of the adjustment appears to drop
durably after this year. Additionally, it should be noticed that the Norwegian survey appears
to be rather insensitive to this change, implying that dividends were badly represented before
2005. Other potential explanations for the difference in the size of adjustments could have

21Appendix E.3.2 presents results for other income groups in the distribution.
22The one exception to this upward correction is Norway in 2006 (see Fig. 7b). However, this is likely due to
a change in the local tax legislation affecting the distribution of business profits (Alstadsæter et al. 2016), as
we explain in the text.
23There is also a considerable difference between these countries’ tax systems and their respective incentives.
In Chile most dividends received by individuals are taxed, while in Brazil they are not. This, in addition to the
fact that Chilean realized capital gains are mostly untaxed, provokes incentives towards the artificial retention
of profits that are not as present in Brazil. This is why, in Chile, the imputation of undistributed profits to the
distribution of personal income appears to be necessary when making international comparisons (Flores and
et al. n.d.).
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Fig. 7 Top 1% shares before and after correction. Notes: the corrected survey using the replacing method
directly replaces the survey distribution above P99 with the distribution above P99 from the tax distribution

to do with behavioral differences between populations across countries related to response
rates and reporting accuracy.

The extent of the adjustment, by definition, depends directly on the shape of the bias that
is observed in Fig. 6. Both the steepness of θ(y), when it is to the right side of the merging
point, and the size of the corrected population (column 4 in Table 1) are decisive factors for
the size of such an increase. Another way to think about the size of the corrected population
is to look at the size of the area between θ(y) and 1, to the right side of the merging point.

Finally, comparing between correction methods, we can observe — in line with our sim-
ulations — that the top 1% share is generally higher in the replacing scenario than in our
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method due to the fact that while the level of numerator income is equivalent in both set-
tings, average incomes (the denominator) is underestimated in the former scenario, as we
show further below.

Gini Coefficients Figure 8 shows the time series of the Gini coefficients before and after
the correction for all available years. Overall, we find a similar hierarchy of estimates,
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mirroring our simulations in the previous section — inequality is corrected upwards, more
so in countries whose raw survey is not already matched with any administrative source, and
to different degrees depending on the year, thus producing distinct trends. This is further evi-
dence that surveys need to be adjusted if they are to better represent the income distribution,
in the same manner as they are currently calibrated to better represent the distribution of
various demographic variables. Again consistent with our simulations, the replacing proce-
dure seems to undershoot inequality levels compared to our method, which more accurately
accounts for higher nonresponse and misreporting at the top. An arbitrary correction of the
top 1% is not enough to adjust the under-coverage of income coming from these errors. This
is especially the case where the corrected population is larger than the arbitrarily chosen
fractile, such as in Brazil and Chile (see Fig. 6 and Table 1).

Average Incomes As alluded to before, the average income of the top percentile using both
correction methods is the same, which is higher than the level observed in the raw surveys.
However, the crucial difference between the two methods is that the average income for
the other groups in the population are not equal. In our method, the weight of persons with
lower incomes are reduced, while the replacing method keeps the same average income for
the bottom income groups. This subsequently produces differences in the overall average
income of the population in both cases. Figure 9 depicts that our method increases the
average income in the surveys in all countries, although with highly varying degrees of
magnitude. In the lower-income countries, which have the highest corrections — Brazil
and Chile — average incomes increase broadly by 30–50%, with the gap increasing over
time. The higher-income countries in Europe experience lower corrections to their average
incomes, with the orders of magnitude between them reproducing the rank of countries
by size of correction in Table 1 — the United Kingdom experiences a larger correction
than Norway, which experiences a larger correction than France. Visibly, in Fig. 9a the gap
between the average in the raw data and corrected data is reduced from 2008 onward on
account of the reduction in the size of the survey bias coming from the methodological
novelties (see Table E.4 in Appendix for further details).

5 Limitations and future research

Our method is tailored to the nature of data typically at the disposal of researchers, that
is, survey micro-data and anonymous tax data in the form of published tabulations. In this
section we draw readers to certain limits that our procedure has, given the empirical context,
and some pointers for future research.

Tax data In reality part of the actual income of the subset of the population included in tax
data may also be missing due to tax-exempt income, the subtraction of certain deductions,
limited enforcement and tax evasion (Alstadsæter et al. 2019). The extent of these omissions
varies by country. As does the presence of top coding in micro-level datasets. If incomes in
the survey data are top-coded, our methodology can at least partially address the issue. The
difficulty arises from the fact that with top coding, information on the ranking of observa-
tions above a certain threshold is lost, which makes it difficult to know how other variables
vary with income at the top. The replacing step of our method will fix the top-coding prob-
lem from the perspective of the univariate distribution of incomes, but information about
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Fig. 9 Average incomes before and after correction. Notes: the corrected survey using the replacing method
directly replaces the survey distribution above P99 with the distribution above P99 from the tax distribution.
Average incomes are rescaled accordingly

the covariates may be of limited use.24 Since our methodology does not in itself correct for
these issues, we urge users to scrutinize the definitions and coverage of income in both data
sources prior to combining the information. When surveys do not offer enough details to
adjust the income concept, or to identify tax units within households, the ability of users to
combine them with tax data with the method described in the paper becomes more limited.

24Note that the same could be said of the raw survey.



T. Blanchet et al.

The definition of the trustable span of the tax data is also at the discretion of researchers,
since the point after which the tax data is reliable is not well-defined, and varies by country.
We have outlined two rules of thumb that can be followed — the percentage of the entire
distribution that tax declarations represent or that smaller portion that are represented by
taxpayers.

Representativeness of bottom incomes Assuming that there are also large variations of
θ (density ratio of survey incomes to tax incomes) at the bottom of the distribution means
assuming that the survey is deficient for the bottom as well as the top of the distribution.
This situation would be difficult to fix with typically available tax data, which rarely covers
the bottom of the distribution. We nonetheless address this issue Appendix A.2, and show
that our method retains good properties even if this assumption is violated. However, if the
very poor are also underrepresented in reality, so that θ has an inverted U-shape, then our
correction will still underestimate the true level of inequality.

The merging point and misreporting Our method for selecting the merging point is jus-
tified under the assumption that the rate of representativeness is constant, then decreasing
with income. If this assumption is violated, our method retains certain properties, so that the
merging point still exists and still preserves the continuity of the density function. But the
meaning or justification for the merging point becomes less clear. We discuss the behavior
of our merging point in more general settings in Appendix A.2.

Compared to other approaches for selecting this point, such as crossing quantiles, our
method adjusts the survey higher up in the distribution, consistent with a standard inter-
pretation of survey non-response, which is the central focus of our paper.25 However, in
a context where misreporting is the only (or main) bias at play, our merging point would
be structurally too high, and our adjustment too conservative because we compensate the
increase of weights at the top with a uniform decrease of weights below the merging point.
To the extent that the missing rich at the top are actually concentrated below this merging
point (because of systematic underreporting of income among this group) our method will
undercorrect the survey and underestimate inequality levels.

However, we know that heterogeneous non-response is an important survey flaw, at least
as important as misreporting (see Appendix F for a literature review of survey biases from
matched survey and administrative data). To our knowledge, Johansson and Klevmarken
(2007) (who look at a wealth survey in Sweden) is the only study that has the empirical
setting to credibly disentangle the role of misreporting and nonresponse in driving survey
biases, because it matches register data not just to the survey sample, but to the entire uni-
verse of both respondents and nonrespondents. It finds that virtually all of the bias in the
survey data is driven by nonresponse rather than misreporting. While we do not believe this
finding to be necessarily universal, it suggests that nonresponse is a major issue.

Misreporting, re-ranking and covariates Although our method improves the representa-
tion of income in the corrected dataset, the maintenance of covariates implies the assumption
that the correction does not re-rank observations as they appear in the survey. This assump-

25Yet, as we showed in the simulations in Section 4.1, our method is robust and performs relatively better
than alternatives in the presence of modeled misreporting using reasonable assumptions.
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tion is made because our paper does not intent to solve the problem of misreporting at
the individual level. If an old person declares to be younger or a rich person declares
to be poorer, our method will not address these errors. Only the matching of individuals
across data sets, a setting rarely available to researchers, would allow for such a correction.
Therefore, our calibration algorithm will not solve problems that involve the re-ranking of
observations across the income and wealth distributions. Consequently, if the joint distribu-
tion of income and age are erroneous in the original survey, our methodology will not be
able to fix that. Users should be fully aware of this limit when wanting to preserve covariates
in the adjusted survey for subsequent analyses.

Therefore, there are still open questions about the precise mechanisms behind the biases
that we observe in surveys, which merit future investigations. We still have insufficient
knowledge about the relative importance of different response rates or misreported income
in driving survey biases, and we do not seek to take a stand on this issue in this article given
the data we work with. By primarily relying on the standard survey calibration framework,
we adhere to a longstanding practice of statistical institutes, which interpret over- and under-
representation issues in the surveys through the lens of nonresponse. For example, they
interpret deviations between the age structure of the survey population and the age structure
of the true population as the result of differential nonresponse, even though there is evidence
that people who self-report their age can misreport it by wide margins (Preston et al. 1999;
Newman 2020).

We probably face similar issues for income: our correction inevitably interprets as
“nonresponse” biases that are partly due to misreporting. When looking at the univariate dis-
tribution of income, the problem is secondary, as long as we match the distribution of the tax
data at the top without introducing clear aberrations (discontinuous density, nonmonotonous
rate of representativeness). Indeed, the margin that we use to perform the adjustment (the
weight of observations, or their income) has no consequence on the distribution we observe.
However, the dependency between income and covariates is affected differently by nonre-
sponse and misreporting. The issue with the misreporting model is that the real, stochastic,
misreporting process cannot be identified by anonymously comparing the survey and the
tax data density, because it also affects the ranking of observations. Therefore, it is only by
matching survey observations with observations in administrative records that this issue can
be solved. We have shown in our simulations (see Section 4.1) that our method is robust to
the inclusion of misreporting in the survey when it comes to measuring inequality. However,
we do not pretend to be able to fix the measurement of the dependency between income and
its covariates that arises from misreporting, and which impacts corrected and uncorrected
surveys alike. The question of whether this represents a major flaw in our understanding of,
say, the income distribution by age group, is a question that we leave for future research,
and better data.

6 Conclusion

The main objective of this paper was to provide a methodological tool that enables
researchers to combine income or wealth surveys with anonymous administrative data in a
simple and consistent manner that directly tackles the problem of differential non-response.
The main innovation of our approach resides in the endogenous determination of a “merging
point,” — the point at which we join tax and survey information.
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Our choice of merging point naturally emerges as the result of a few basic principles.
First the rate of income representativeness (i.e., the ratio of the income survey density
to the income tax data density) is a continuous function of income. Second, it decreases
monotonously at the top. Third, we should avoid distorting the survey data at the bottom, for
which the tax data provides no reliable information: therefore, the rate of representativeness
should preferably be kept constant below the merging point. We explained that these three
basic requirements are sufficient to unambiguously determine the location of the merging
point. Therefore, our methodology provides a straightforward basis for directly estimating
this key parameter, rather than choosing it arbitrarily.

We complement our approach for choosing a merging point with a concrete, two-step
survey correction method. First, we reweight survey observations using tools from standard
survey calibration theory. It allows us to match the survey data to a histogram approximation
of the tax data density, while ensuring the representativeness of the survey in terms of other
socio-demographic variables such as gender, age, household type, etc. Second, we replace
survey observations beyond the merging point by synthetic observations that exactly repro-
duce the distribution of income observed in the tax data, while keeping the distribution of
covariates and their dependency with income according to the survey intact. In doing so, we
get rid of the small-sample issues that prevent surveys from accurately describing the top
tail of income distributions, retaining as much information as we can from the initial data.
These two steps preserve the microdata structure of the original survey, making it possible
to work with different statistical units, or equivalence scales, as one would do with regular
survey data.

We perform simulations that show that our approach improves the survey data, in that it
reduces both the bias and the variance of inequality estimates. It also performs better than
common alternative methods using the same data. We apply our approach to several coun-
tries, both developed and less developed, and show that both levels and trends in inequality
can be significantly revised.

This procedure carries with it some limitations that are important to keep in mind, given
the nature of the problemwe face and the data usually available to address it. At the forefront
of these is the assumption of no reranking of survey observations, made as a consequence of
our inability to observe misreporting at the individual level (a rare phenomenon to observe
with standard data). As we outlined above, this may affect the location of the merging point
and the accuracy of the distribution of covariates. The posterior use of the corrected survey
should have this in mind.

We stress that we still face many obstacles in properly measuring inequality in many
countries, and in understanding the actual biases that affect surveys. The issues are com-
plex and require detailed attention to the data being used as well as to the objectives of
the research. No single source is enough to accurately measure inequality and its determi-
nants. While administrative data benefits from its large sample sizes and its lack of sampling
error, both the breadth and the depth of information that can be collected from surveys is
unparalleled. At the same time, the presence of significant gaps between similar concepts
in different data sources ought to be a cause for concern. Ultimately, we hope that efforts to
reconcile the various sources will improve our understanding and use of both surveys and
tax data. We think that the methodology developed in this paper constitutes a step forward
in this direction.

Supplementary Information The online version contains supplementary material available at
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